Degenerate elliptic problem with singular gradient lower order term and variable exponents

نویسندگان

چکیده

In this paper, we prove the existence and regularity of weak solutions for a class nonlinear elliptic equations with degenerate coercivity singular lower-order terms natural growth respect to gradient Lm(⋅) (m(x)≥1) data. The functional setting involves Lebesgue–Sobolev spaces variable exponents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term

In this paper we study a Dirichlet problem for an elliptic equation with degenerate coercivity and a singular lower order term with natural growth with respect to the gradient. The model problem is

متن کامل

An elliptic problem with a lower order term having singular behaviour

We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution u in a singular way and on its gradient Du with quadratic growth. The prototype of the problem under consideration is 8 < : −∆u + λu = ± |Du| 2 |u| k + f in Ω, u = 0 on ∂Ω, where λ > 0, k > 0, f (x) ∈ L ∞ (Ω), f (x) ≥ 0 (and so u ≥ 0). If 0 < k < 1, we prove the existe...

متن کامل

Degenerate elliptic equations with singular nonlinearities

The behavior of the “minimal branch” is investigated for quasilinear eigenvalue problems involving the p-Laplace operator, considered in a smooth bounded domain of RN , and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very general class and the results we present are new even for p = 2. Due to the degeneracy of p-Laplace operator, for p = 2 it is crucial to...

متن کامل

Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds

In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.

متن کامل

The Dirichlet Problem for Elliptic Equations in Divergence and Nondivergence Form with Singular Drift Term

is a Carleson measure in a Lipschitz domain Ω ⊂ R, n ≥ 1, (here δ (X) = dist (X, ∂Ω)). If the harmonic measure dωL0 ∈ A∞, then dωL1 ∈ A∞. This is an analog to Theorem 2.17 in [8] for divergence form operators. As an application of this, a new approximation argument and known results we obtain: Let L be an elliptic operator with coefficients A and drift term b; L can be in divergence or nondiver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical modeling and computing

سال: 2023

ISSN: ['2312-9794', '2415-3788']

DOI: https://doi.org/10.23939/mmc2023.01.133